Member-only story

Here’s What You Really Need To Know About Quantum Computing

Greg Satell
5 min readJun 2, 2019
Image: Wikimedia Commons

Every once in a while, a technology comes along with so much potential that people can’t seem to stop talking about it. That’s fun and exciting, but it can also be confusing. Not all of the people who opine really know what they’re talking about and, as the cacophony of voices increases to a loud roar, it’s hard to know what to believe.

We’re beginning to hit that point with quantum computing. Listen to some and you imagine that you’ll be strolling down to your local Apple store to pick one up any day now. Others will tell you that these diabolical machines will kill encryption and bring global commerce to a screeching halt. None of this is true.

What is true though is that quantum computing is not only almost unimaginably powerful, it is also completely different than anything we’ve ever seen before. You won’t use a quantum computer to write emails or to play videos, but the technology will significantly impact our lives over the next decade or two. Here’s a basic guide to what you really need to know.

Computing In 3 Dimensions

Quantum computing, as any expert will tell you, uses quantum effects such as superposition and entanglement to compute, unlike digital computers that use strings of ones and zeros. Yet quantum effects are so confusing that the great physicist Richard Feynman once remarked that nobody, even world class experts like him, really understands them.

So instead of quantum effects, think of quantum computing as a machine that works in three dimensions rather than two-dimensions like digital computers. The benefits of this should be obvious, because you can fit a lot more stuff into three dimensions than you can into two, so a quantum computer can handle vastly more complexity than the ones we’re used to.

Another added benefit is that we live in three dimensions, so quantum computers can simulate the systems we deal with every day, like those in materials and biological organisms. Digital computers can do this to some extent, but some information always gets lost translating the data from a three dimensional world to a two dimensional one, which leads to problems.

--

--

Greg Satell
Greg Satell

Written by Greg Satell

Co-Founder: ChangeOS | Bestselling Author, Keynote Speaker, Wharton Lecturer, HBR Contributor, - Learn more at www.GregSatell.com

No responses yet

Write a response